Design of 4 GHz UWB Pulse Generator with Simultaneous Optimization of Sidelobe Suppression and Bandwidth

Hafiz Usman Mahmood¹, Jusung Kim², Sang-Gug Lee¹

¹NICE Lab, Korea Advanced Institute of Science and Technology (KAIST), Daejeon

²Hanbat National University, Daejeon

ABSTRACT

This work presents and OOK driven IR-UWB pulse generator (PG) with simultaneous optimization of sidelobe suppression and bandwidth by utilizing a triangular enveloped UWB pulse, which also eliminates the need for an off-chip filter. The prototype PG implemented in 65-nm CMOS process shows 577 mV_{pp} pulse amplitude, a BW_{-} of 1.12 GHz and more than 25 dB sidelobe 10dB suppression in 1.7–3.1 GHz band at an energy consumption of 33 pJ/pulse, occupying 0.64 mm² area.

INTRODUCTION

- IR-UWB is promising technology for high data rate communications with very low effective power levels.
- A UWB pulse must comply with the FCC spectral mask in all frequency ranges.
- A triangular shaped pulse can be utilized to stay within FCC limits without need for an additional pulse

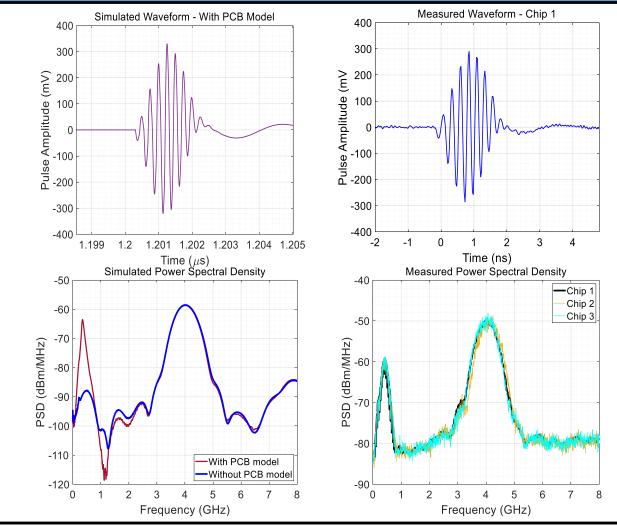
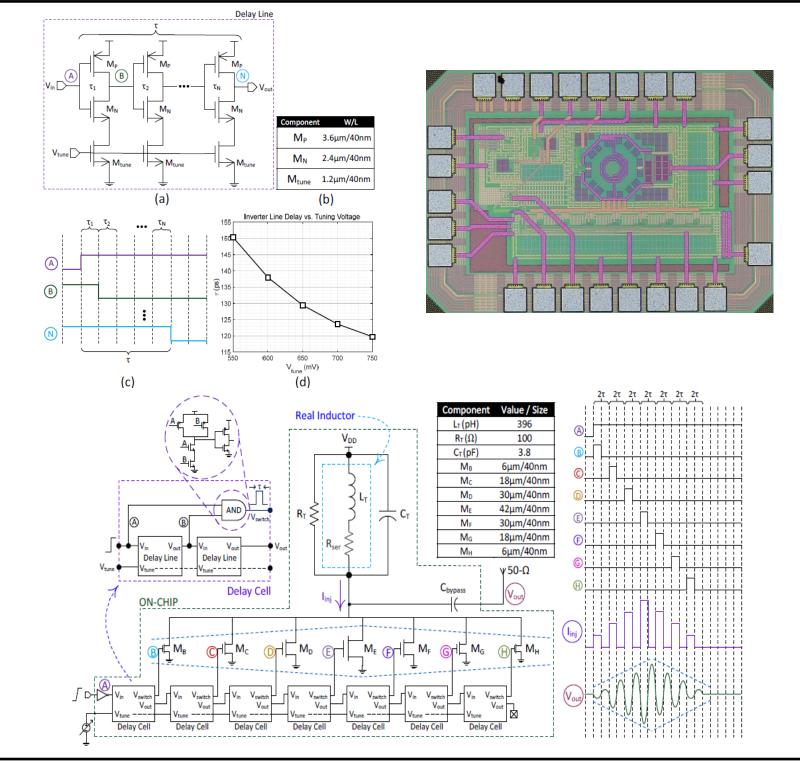


Fig. 2 Simulated and Measured UWB pulse and its PSD

DISCUSSION


 \Box The pulse peak-to-peak amplitude is 577 mV_{pp}.

□ The amount of measured sidelobe suppression is 27 dB.

- shaping filter.
- LO-based pulse generation schemes have been presented in literature, but edge-combination based architecture provides more flexibility in design.

PULSE GENERATOR DESIGN

- Current starved inverters (CSI) based delay cells produce timing characteristics to generate a triangular shaped current, i_{ini} .
- □ The *RLC* load converts the injected current to voltage by extracting the fundament component of i_{ini} .
- \Box The load quality factor must be very low ($\dot{Q}_{\rm T} \approx 2$) to ensure low amplitude residual pulses, which affect the shape of the pulse.
- □ The pulse center frequency can be manually tuned by varying the tuning voltage of the tuning device in CSI.

- □ The BW_{-10dB} is 1.12 GHz with a center frequency of 4 GHz.
- \Box The measured energy consumption per pulse is 33 pJ/pulse at a PRF of 10 MHz.

PERFORMANCE COMPARISON

	This Work	[1]	[2]
Modulation	OOK	PPM	PPM
$V_{\rm pp}~({ m mV})$	577	400	< 100
BW _{-10dB} (GHz)	1.12	0.737	0.7
Suppression (dB)	27	13	14
Energy (pJ/pulse)	33	19	22.6

CONCLUSION

- work proposed a UWB PG **U** This with simultaneously optimized sidelobe suppression and bandwidth.
- □ Implemented in 65-nm CMOS process, the proposed PG shows best performance in terms of sidelobe suppression, pulse peak-to-peak amplitude, and bandwidth.

REFERENCES

Fig. 1. Implemented architecture with delay line, delay cell and chip micrograph

[1] M. Crepaldi, C. Li, J. R. Fernandes, and P. R. Kinget, "An ultrawideband impulse-radio transceiver chipset using synchronized-OOK modulation," IEEE Journal of Solid-State Circuits, vol. 46, no. 10, pp. 2284–2299, 2011.

[2] O. Novak, C. Charles, and R. B. Brown, "A fully integrated 19 pJ/ pulse UWB transmitter for biomedical applications implemented in 6 5 nm CMOS technology," in IEEE International Conference on Ultra-Wideband, pp. 72–75, 2011.

ACKNOWLEDGEMENT

The chip fabrication and EDA tools were supported by the IC Design Education Center (IDEC), Korea